Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (PIP2)- and cholesterol-containing monolayers.
نویسندگان
چکیده
Biological membrane function, in part, depends upon the local regulation of lipid composition. The spatial heterogeneity of membrane lipids has been extensively explored in the context of cholesterol and phospholipid acyl-chain-dependent domain formation, but the effects of lipid head groups and soluble factors in lateral lipid organization are less clear. In this contribution, the effects of divalent calcium ions on domain formation in monolayers containing phosphatidylinositol 4,5-bisphosphate (PIP2), a polyanionic, multifunctional lipid of the cytosolic leaflet of the plasma bilayer, are reported. In binary monolayers of PIP2 mixed with zwitterionic lipids, calcium induced a rapid, PIP2-dependent surface pressure drop, with the concomitant formation of laterally segregated, PIP2-rich domains. The effect was dependent upon head-group multivalency, because lowered pH suppressed the surface-pressure effect and domain formation. In accordance with previous observations, inclusion of cholesterol in lipid mixtures induced coexistence of two liquid phases. Phase separation strongly segregated PIP2 to the cholesterol-poor phase, suggesting a role for cholesterol-dependent lipid demixing in regulating PIP2 localization and local concentration. Similar to binary mixtures, subphase calcium induced contraction of ternary cholesterol-containing monolayers; however, in these mixtures, calcium induced an unexpected, PIP2- and multivalency-dependent decrease in the miscibility phase transition surface pressure, resulting in rapid dissolution of the domains. This result emphasizes the likely critical role of subphase factors and lipid head-group specificity in the formation and stability of cholesterol-dependent domains in cellular plasma membranes.
منابع مشابه
Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines.
A 3D model was developed and used to explore dynamics of phosphatidylinositol-4,5-bisphosphate (PIP2) signaling in cerebellar Purkinje neurons. Long-term depression in Purkinje neurons depends on coincidence detection of climbing fiber stimulus evoking extracellular calcium flux into the cell and parallel fiber stimulus evoking inositol-1,4,5-trisphosphate (IP3)-meditated calcium release from t...
متن کاملDivalent cation-induced cluster formation by polyphosphoinositides in model membranes.
Polyphosphoinositides (PPIs) and in particular phosphatidylinositol-(4,5)-bisphosphate (PI4,5P2), control many cellular events and bind with variable levels of specificity to hundreds of intracellular proteins in vitro. The much more restricted targeting of proteins to PPIs in cell membranes is thought to result in part from the formation of spatially distinct PIP2 pools, but the mechanisms tha...
متن کاملChanges in phosphatidylinositol-4,5-bisphosphate 10 seconds after stimulation of washed rabbit platelets with ADP.
Adenosine diphosphate (ADP) induced aggregation of rabbit platelets, without the release reaction, causes a significant decrease (7%) in the amount of phosphatidylinositol-4,5-bisphosphate (PIP2) at 10 sec and at 60 sec (11%). In platelets prelabeled with 32P-phosphate, this decrease in PIP2 is associated with a decrease in PIP2 radioactivity, which is significant at 50 sec. The decrease in PIP...
متن کاملMembrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin.
Responses to cholesterol depletion are often taken as evidence of a role for lipid rafts in cell function. Here, we show that depletion of cell cholesterol has global effects on cell and plasma membrane architecture and function. The lateral mobility of membrane proteins is reduced when cell cholesterol is chronically or acutely depleted. The change in mobility is a consequence of the reorganiz...
متن کاملSpecific interaction to PIP2 increases the kinetic rate of membrane binding of VILIPs, a subfamily of Neuronal Calcium Sensors (NCS) proteins.
VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of posit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 48 34 شماره
صفحات -
تاریخ انتشار 2009